首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5189篇
  免费   492篇
  国内免费   705篇
电工技术   327篇
综合类   208篇
化学工业   1524篇
金属工艺   949篇
机械仪表   288篇
建筑科学   10篇
矿业工程   55篇
能源动力   45篇
轻工业   16篇
水利工程   3篇
石油天然气   8篇
武器工业   62篇
无线电   1308篇
一般工业技术   1236篇
冶金工业   165篇
原子能技术   89篇
自动化技术   93篇
  2024年   5篇
  2023年   163篇
  2022年   217篇
  2021年   249篇
  2020年   192篇
  2019年   183篇
  2018年   193篇
  2017年   216篇
  2016年   221篇
  2015年   123篇
  2014年   222篇
  2013年   245篇
  2012年   250篇
  2011年   385篇
  2010年   232篇
  2009年   335篇
  2008年   285篇
  2007年   360篇
  2006年   347篇
  2005年   244篇
  2004年   238篇
  2003年   183篇
  2002年   229篇
  2001年   225篇
  2000年   159篇
  1999年   121篇
  1998年   108篇
  1997年   78篇
  1996年   85篇
  1995年   72篇
  1994年   59篇
  1993年   47篇
  1992年   41篇
  1991年   20篇
  1990年   13篇
  1989年   22篇
  1988年   8篇
  1987年   1篇
  1986年   5篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1959年   2篇
排序方式: 共有6386条查询结果,搜索用时 15 毫秒
41.
An improved multi-recessed 4H–SiC metal semiconductor field effect transistor (MRD-MESFET) with double-recessed p-buffer layer (DRB-MESFET) is proposed in this paper. By introducing a double-recessed p-buffer layer, the gate depletion layer is further modulated, and higher drain saturation current and DC transconductance are obtained compared with the MRD-MESFET. The simulations show that the drain saturation current of the DRB-MESFET is about 42.4% larger than that of the MRD-MESFET. The DC transconductance of the DRB-MESFET is almost 15% higher than that of the MRD-MESFET and very close to that of double-recessed structure (DR-MESFET) at the bias conditions of Vgs=0 V and Vds=40 V. The proposed structure has an improvement of 26.1% and 74.2% in the output maximum power density compared with that of the MRD-MESFET and DR-MESFET, respectively. In the meanwhile, the proposed structure possesses smaller gate-source capacitance, which results in better RF characteristics.  相似文献   
42.
For the first time, we present the unique features exhibited by power 4H–SiC UMOSFET in which N and P type columns (NPC) in the drift region are incorporated to improve the breakdown voltage, the specific on-resistance, and the total lateral cell pitch. The P-type column creates a potential barrier in the drift region of the proposed structure for increasing the breakdown voltage and the N-type column reduces the specific on-resistance. Also, the JFET effects reduce and so the total lateral cell pitch will decrease. In the NPC-UMOSFET, the electric field crowding reduces due to the created potential barrier by the NPC regions and causes more uniform electric field distribution in the structure. Using two dimensional simulations, the breakdown voltage and the specific on-resistance of the proposed structure are investigated for the columns parameters in comparison with a conventional UMOSFET (C-UMOSFET) and an accumulation layer UMOSFET (AL-UMOSFET) structures. For the NPC-UMOSFET with 10 µm drift region length the maximum breakdown voltage of 1274 V is obtained, while at the same drift region length, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 and 703 V, respectively. Moreover, the proposed structure exhibits a superior specific on-resistance (Ron,sp) of 2  cm2, which shows that the on-resistance of the optimized NPC-UMOSFET are decreased by 56% and 58% in comparison with the C-UMOSFET and the AL-UMOSFET, respectively.  相似文献   
43.
《Ceramics International》2020,46(3):2910-2914
Porous silicon-bonded silicon carbide (SBSC) ceramics were prepared under argon atmosphere, with silicon as pore former and bonding material, simultaneously, sodium dodecyl benzene sulfonate (SDBS) and ZrO2 as sintering additives, the effects of SDBS and ZrO2 on the porosity, pore size, mechanical, physical and thermal properties and microstructures were investigated. The results suggested that suitable content of SDBS and ZrO2 could not only effectively lower the sintering temperature to 1450 °C due to the sticky flow of molten silicon, but also increase the pore structure and improve the bending strength. The reason for this is that SDBS decomposed into Na2O which reacted with ZrO2 and impurity SiO2, which was the native oxide film on the surface of SiC particles, to form a bonding phase between SiC particles to improve the bending strength; meanwhile, the disappearances of impurity SiO2 would benefit the bond of molten silicon and silicon carbide particles, and silicon melt leaving pores in its original position to increase the pore structure. The optimal apparent porosity, bending strength, average pore size, gas permeance and residual bending strength after thermal shock cycles of SBSC porous ceramic sintered at 1450 °C with 5 wt% SDBS and 6 wt% ZrO2 were 38.33%, 55.4 MPa, 11.3 μm, 106.4 m3/m2·h·kPa and 28.2 MPa, respectively.  相似文献   
44.
Scheelite coating was deposited on SiC fiber tows from various liquid-phase precursors at 1100℃. Strength degradation of SiC fiber was found after fiber coating which was found to be caused by the stress corrosion as a result of gases generated from the decomposition of by-products remaining in the coating. A new and simple method of low temperature pre-heat treatment was adopted to eliminate the stress corrosion in the fiber coating process and to isolate the effect of different types of gases on the stress corrosion cracking of fibers. The tensile strength and fractography of samples with and without pre-heat treatment were compared. Furthermore, the effect of gas composition on the strength degradation of SiC fiber was also investigated through the control experiments.  相似文献   
45.
Carbon fiber reinforced SiC matrix composites (C/SiC) with four different deposition channel sizes were fabricated via a novel laser-assisted chemical vapor infiltration (LA-CVI) method. Effects of infiltration channel sizes on microstructure and mechanical properties of C/SiC composites were investigated. The results showed that increasing the size of channels could expand infiltration passages and densification bands, which was consistent with theoretical calculations. Due to the presence of channels, the flexural strength of C/SiC composite increased by 14.47% when the channel diameter was 0.3?mm, compared to C/SiC composites prepared via conventional CVI process. Characteristics of matrix cracking and crack propagation on fracture surface were analyzed by using scanning electron microscopy. LA-CVI C/SiC composites displayed significantly improved damage-tolerant fracture behavior. Thus, findings of this work demonstrate that LA-CVI fabricated C/SiC composites are promising for a wide range of applications, particularly for enclosed-structure and thick-section C/SiC composites.  相似文献   
46.
The recent years have seen an increasing trend in the cumulative installed capacity of distributed generators. As a result, voltage management may become difficult in existing power distribution systems in the future. A STATCOM (STAtic synchronous COMpensator) is a promising option for solving this problem because it can control reactive power rapidly and continuously. For a distribution system, STATCOM needs to be pole‐mounted to realize its low cost. However, a transformer for a STATCOM is large and heavy, and hence it is difficult to install a STATCOM on a distribution pole. We adopt a transformerless STATCOM to reduce STATCOM size and use SiC devices with low‐loss performance to obtain a more compact and efficient STATCOM. There are a large number of circuits available for a STATCOM, and there has been considerable research on performance comparisons among these circuits. However, these comparisons were drawn under different conditions, including switching frequency and level number for the circuits. In addition, these comparisons do not include the use of SiC devices. We made an equitable comparison for a 100 kVa pole‐mounted STATCOM using SiC devices. We discuss the performance and characteristics of each circuit in terms of efficiency and volume.  相似文献   
47.
Si C单晶因优良的物理和机械性能而大量用于大功率器件和IC行业。但由于材料的高硬度和高脆性,使其加工过程变得很困难。为此,分析了Si C单晶片切割过程,建立切割过程模型,通过F检验法进行系统阶次辨识,采用遗忘因子递推最小二乘算法在线估计模型参数,建立进给量与切割力的差分方程,设计基于最小方差自校正的切割力控制器,并进行实验验证。结果表明:控制器能够很好的跟踪不同信号,具有良好的鲁棒性,提高了Si C单晶片的加工效率和表面质量。  相似文献   
48.
Due to the large amount of ceramic tile polishing waste generated in China, the recycling of this waste residue becomes important. Herein a foam ceramic was successfully produced by using ceramic tile polishing waste as main raw material. In this research, SiC was added as the foam agent, and the foaming mechanism was also investigated. The results showed that the best dosage of SiC was 1%. Furthermore, in order to obtain a foam ceramic with better structure, the sodium phosphate was added in raw materials as foam stabilizer. The influence of this addition on the microstructure and properties of foam ceramic was investigated. It was found that the optimum additive amount of sodium phosphate is 2–3%.  相似文献   
49.
This research presents an analysis of the influence of graphene reinforcement on the thermal and mechanical properties of silicon carbide ceramics, at 2.5% (wt%) graphene content. The SiC composites, containing various carbon nanofillers (graphene oxide and graphene nanoparticles), were sintered by the classical two stage spark plasma sintering method. Two current modes were used, the continuous mode and the pulsed current mode. The results from photothermal radiometry and investigations of the mechanical properties showed that graphene additives significantly improve the thermal properties and toughness of material, sintered from a SiC powder. An 45% growth in the toughness was observed, which increased from 1.21 to 1.75?MPa/m1/2. The thermal diffusivity value also increased from 0.60 to 0.71?cm2/s and giving an improvement in thermal properties of 18%. The friction coefficient reached 7% giving an increase in value from 0.62 to 0.66. Microscopic investigations supported the photothermal radiometry (PTR) results. Whilst, thermal imaging revealed homogeneity of the local thermal properties of the products fabricated from the starting SiC powder.  相似文献   
50.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号